Manual 40 W laser diode pulsing system (LD-PS/40)

General remarks

The LD-PS/40 laser has a built-in synchronizer to generate laser pulses and trigger signals for the camera. Signals and laser pulses will only be generated if powered on, if the interlock is closed and if a suitable signal is received via the wireless serial link. The synchronizer can be shipped with different firmwares for the supported cameras (pco pixelfly usb, pco panda 26 DS and Kron Technologies Chronos). Custom firmware is available on request. The timing of the pulses and camera signals can be controlled from PIVIab, a free PIV toolbox for MATLAB.

Before using the LD-PS, please download the *latest version* of PIVlab from here:

https://github.com/Shrediquette/PIVlab/releases/latest

The communication between PIVIab and the synchronizer in the laser is implemented with a wireless serial link. The white USB dongle must be inserted, and the driver ("CP210x Universal Windows Driver", supplied on the USB stick) must be installed. Check windows device manager to see if the dongle was installed properly:

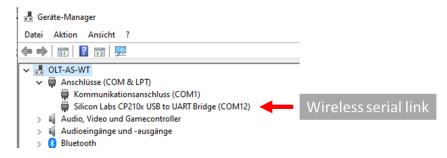
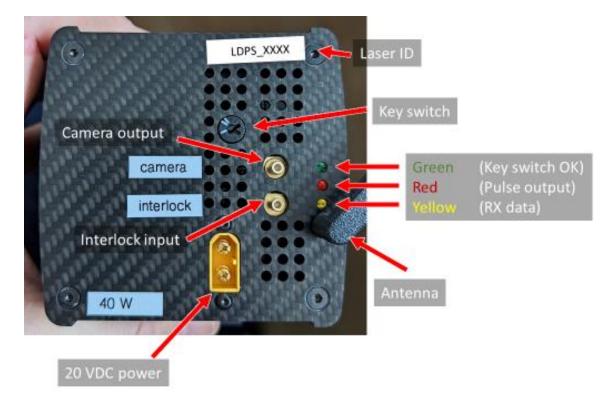



Figure 1: Windows device manager, serial ports.

Hardware setup

Figure 2: The back side of the LD-PS and the available connections.

Figure 3: Key to arm the laser

- Insert the wireless dongle to your computer (make sure it is detected by windows).
- Connect the interlock cable to a suitable mechanical switch (normally open, e.g. door switch). WARNING: When the two wires from the interlock cable are connected, then the laser is ready to emit light. ALWAYS wear safety glasses! ALWAYS make sure that the laser light hits a suitable beam dump (e.g. a thick matte black metallic object).
- Connect the camera cable to your camera.
- Insert the 20 VDC power plug. The LEDs will flash briefly, the fan will turn on for a short time.
- Turn the key switch clockwise (to position "II") to arm the laser
- Start PIVlabs image acquisition module to control the laser.

Interlock

The cables of the interlock should be connected to a proper door switch (normally open). When someone opens the door (switch opens), the laser will turn off immediately.

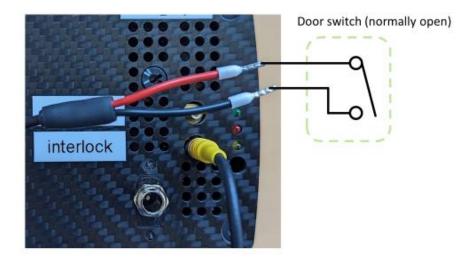


Figure 4: The interlock connection

LEDs

There are three LEDs on the back of the laser, indicating the following:

- Green LED: Key switch OK (armed), ready to emit laser pulses.
- Red LED: Flashes with every 2nd laser pulse that is emitted
- Yellow LED: Data received from PIVlab

Optics

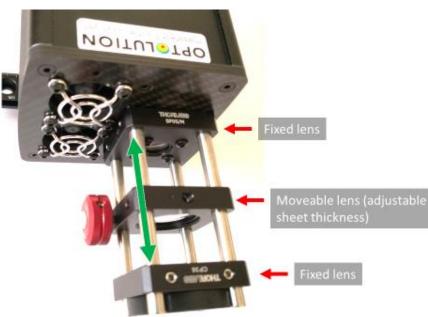


Figure 5: Light sheet optics.

The light sheet optics consists of three lenses: The central lens can be moved to minimize the sheet thickness at the desired distance (focussing). **The cylindrical lens must not be**

moved or rotated. If you need to rotate the light sheet, then rotate the whole laser, not the cylindrical lens. Keep the optics free from dust, otherwise the lenses might be damaged. Installing a bandpass filter (450 nm \pm 40 nm) in the camera is highly recommended, as the exposure of PIV cameras is often longer than the laser pulses.

Control from PIVlab

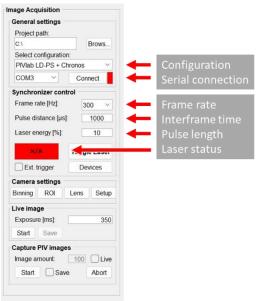


Figure 6: PIVlabs image acquisition module.

Select a suitable configuration ("PIVIab LD-PS" + your camera model), select the correct COM port for the wireless USB dongle and hit connect. When you connect for the first time to your laser, a message box will appear, asking you to insert the ID of the laser. This ID can be found on a small sticker on your LD-PS. When you entered the wrong ID, you can undo this and try again by deleting the file "laser_device_id.mat", located in the folder "PIVIab_capture_resources".

The yellow LED on the LD-PS should flash briefly, and the laser status should change to "Laser OFF". Set the frame rate to a low value (e.g. 5 Hz), the pulse distance (interframe time) to 100 μ s, and the laser energy (pulse length) to 10%. Place a suitable beam dump in front of the laser, close the interlock and start the laser by clicking "Toggle Laser". The laser status should change to "Laser ON". The laser now runs with a duty cycle of 0.01% (Two 10 μ s long pulses, separated by 100 μ s with 5 Hz). Click the toggle button again to turn off the laser.

"Frame rate", "pulse distance" and "laser energy" are defined in the following figure:

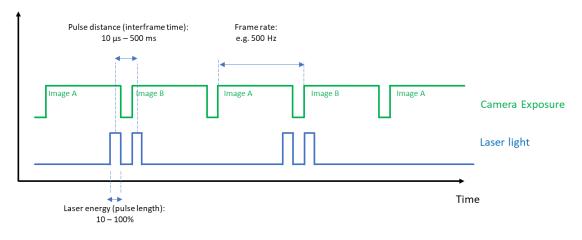


Figure 7: Definition of "Frame rate", "pulse distance" and "laser energy".

The setting for "laser energy" defines the pulse length. A setting of 100% means that the pulse length has approximately the same length as the pulse distance. The exact pulse length depends on a number of parameters; therefore, it is shown in the PIVlab GUI after the laser has been turned on. A higher laser energy makes the particle images brighter, but it will also increase the motion blur.

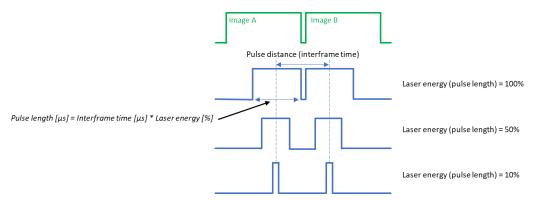


Figure 8:Details on the relation of laser energy and pulse length.